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A B S T R A C T

The integration of Artificial Intelligence (AI) into crop breeding represents a paradigm shift toward data-driven 
agricultural practices, aiming to enhance the efficiency and precision of crop improvement. In this perspective, 
we critically evaluate the impact of genomic prediction models like SoyDNGP (Soybean Deep Neural Genomic 
Prediction) on crop breeding. We discuss their current applications, challenges, and future potential. Addressing 
existing obstacles such as optimizing parent selection, accurately predicting the combined effects of multiple 
traits and genes, advancing explainable deep learning, and incorporating environmental factors, we propose 
practical approaches to overcome these challenges. Our insights aim to unlock the full potential of AI in genomic 
prediction, contributing to a comprehensive understanding of AI’s role in agriculture. We advocate for future 
research efforts that harness AI to cultivate sustainable and equitable food systems.

Introduction

The rapid paradigm shifts brought about by artificial intelligence 
(AI) technology have substantially influenced diverse segments of our 
lives, leading to novel ways of living while changing how we work. AI 
development has also spurred a new phase in the life sciences. A clear 
example of this is AlphaFold, and its ability to successfully predict the 
shapes of proteins, marking a breakthrough in protein research and a 
historic moment in the life sciences (Jumper et al., 2021). Moreover, as 
the world's population grows and the climate changes, we need to de
velop quicker and more effective methods to accelerate the crop 
breeding process (Newman and Furbank, 2021; Xiong et al., 2022).

Using AI technologies has the potential to substantially accelerate the 
sluggish process of crop breeding. By predicting crop traits before planting 
with the assistance of AI models, breeders could cut years of work down to 
one season. AI will revolutionize the breeding process by making accurate 
predictions from comprehensive genetic data (Xu et al., 2022). The rise of 
“AI Breeders” marks a significant step, bringing together advanced com
puting and comprehension of biology. This integrated approach improves 
the skills of breeders with AI's ability to forecast the possibility of breeding 
results, enhancing the accuracy and speed of breeding processes.

AI is a key player in the evolution of crop enhancement, enabling 
researchers to chart a path toward overcoming the critical demand for 

sustainable agricultural practices. By harnessing the extensive potential 
of genetic data using predictive models, AI Breeders can push the limits 
of traditional selective breeding, leading us into an era in which crop 
improvement is driven by science and data. Building upon our pre
liminary foundation of predicting phenotypes according to genotypes, 
our focus has shifted to genomic prediction, sharing perspectives and 
possibilities, and expressing viewpoints and prospects, with the aim of 
promoting the application of genomic prediction in breeding, thus ac
celerating precision-designed breeding.

The evolution of genomic prediction

Genomic prediction, also known as Genomic Selection (GS), is a cor
nerstone of modern crop improvement strategies. It is the science of fore
casting the performance of putative breeding candidates according to their 
genetic makeup. The evolution of GS has been a critical step in modern 
plant breeding. Originally identified by Meuwissen et al. (2001) for animal 
breeding, GS has become a central strategy for determining the phenotypes 
of polygenic traits in plants and crops using genome-wide markers. This 
method has been confirmed in diverse crop species, including wheat, maize, 
and rice, underscoring its usefulness in practical breeding programs 
(Montesinos-Lopez et al., 2021; Wang et al., 2023; Yan et al., 2023). 
However, challenges are still present, particularly in developing accurate 

https://doi.org/10.1016/j.ncrops.2023.12.005 
Received 6 November 2023; Received in revised form 27 November 2023; Accepted 3 December 2023 
Available online 14 December 2023
2949-9526/© 2024 Henan University. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY- 
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

]]]] 
]]]]]]

⁎ Corresponding author at: National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, 
No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, China.

E-mail address: xtwang@mail.hzau.edu.cn (X. Wang).
1 These authors contributed equally to this work.

https://doi.org/10.1016/j.ncrops.2023.12.005
http://www.sciencedirect.com/science/journal/29499526
https://www.keaipublishing.com/en/journals/new-crops/
https://doi.org/10.1016/j.ncrops.2023.12.005
https://doi.org/10.1016/j.ncrops.2023.12.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ncrops.2023.12.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ncrops.2023.12.005&domain=pdf
mailto:xtwang@mail.hzau.edu.cn


predictions within high-dimensional marker spaces in which genotypic 
markers outnumber the population size. Traditional GS models, dependent 
upon statistical algorithms like BLUP-based (e.g., ridge regression BLUP and 
genomic relationship BLUP)(BLUP: best linear unbiased prediction) and 
Bayesian-based algorithms, often have difficulty with the high dimension
ality of marker data and the complexity of relationships within and between 
genotypes and phenotypes (Danilevicz et al., 2022).

Deep learning technologies have ushered in a new era in genomic se
lection. Methods such as DeepGS (an R package for predicting phenotypes 
from genotypes using deep learning techniques) and DNNGP (deep neural 
network for genomic prediction) employ deep neural networks and strate
gies, including convolution, sampling, dropout, and ensemble learning to 
manage high-dimensional genotypic data complexity. DeepGS, for example, 
complements traditional methods such as rrBLUP by providing more accu
rate phenotypic value selection (Ma et al., 2018). DNNGP distinguishes itself 
by combining multi-omics data throughout plants, using a deep neural net
work with a multilayered hierarchical structure for dynamic feature learning. 
This model manages the breeding data at diverse scales, offering improved 
prediction accuracy and quicker computation durations than typical 
methods, making it a valuable tool for GS platforms (Wang et al., 2023).

Our recently developed SoyDNGP model is another significant example 
of the use of deep learning for genomic prediction in crop breeding (Gao 
et al., 2023). A key step forward in the SoyDNGP model is its novel 

methodology for processing genetic variant information. Traditional 
models usually convert DNA sequences into “one-hot encoding” binary 
data, resulting in large, sparse matrices lacking information on the full 
biological significance of nucleotide sequences. In contrast, SoyDNGP 
transforms genetic variants into an image-like data format, allowing the 
convolutional neural network (CNN) to process this information similarly 
to image recognition tasks. This unique representation allows the SoyDNGP 
to characterize complex patterns and features within genomic data, lever
aging multiple convolutional, and pooling layers to determine the intricate 
relationships and interactions between different genetic regions.

Parental selection with genomic prediction model

The SoyDNGP model structure employed a novel approach for con
verting genetic variant information, which is more resource-efficient than 
the traditional one-hot encoding approaches utilized in diverse deep 
learning applications. The genotype of each sample was transformed into a 
three-channel image-like format to capture information from both homo
zygous and heterozygous mutation sites (Fig. 1A). This structure improved 
the prediction model's functionality, enabling it to identify optimal parent 
mixtures, a feature that is useful for crops that benefit from cross-breeding 
approaches (Fig. 1B). Our method mimics the crossbreeding process by 
digitally merging the genotypes of potential parent plants to simulate both 

Fig. 1. Overview of the SoyDNGP model architecture and functional applications. 
(A) Schematic representation of the SoyDNGP model framework. Genotype files displayed in VCF format are transformed into a three-channel image-like input for 
each sample. The core architecture is composed of 12 convolutional layers followed by a single fully connected layer, specialized for regression analysis of quan
titative traits and classification of qualitative traits. (B) Use in the selection of parental lines. Virtual F1 genotypes are developed by digitally simulating the 
combination of variable sites from the parental lines, such as the haplotype C12, representing a virtual hybrid between P1 and P2. Using combinatorial approaches, 
we can evaluate all possible parental line combinations. The SoyDNGP models are then utilized to forecast the phenotypes for specific traits such as T1, T2, and T3. 
For each trait, a ranking index is compiled to align with expectations. The rankings "1", "2", and "3" denote the sorted preferences for the given trait. (C) Application in 
multi-trait aggregate breeding. For the desired integration of traits, initial weights are given to each trait, which contributes to an Expected Index (EI) for the overall 
composite trait. For example, sample C12 has a score of 1.4, calculated by weighting its trait scores (1 × 0.6 + 3 × 0.2 + 2 × 0.1). Comparatively, samples C23 and 
C13 have scores of 2.8 and 2.3, respectively. Ultimately, the EI ranks composite traits as "1", "3", and "2" for selection purposes, with P1 and P2 emerging as the 
optimal pairing for the desired composite trait. (D) Prospects for multi-gene aggregate breeding. By randomly disturbing each genetic site once or several times away 
from the reference (Ref.) to the alternate (Alt.) allele—accounting for three possible states: homozygous Ref., homozygous Alt., or heterozygous—we can develop 3 n 

potential in silico haplotypes. Using our models, we can forecast outcomes for single or combined traits. This method allows for evaluating the most advantageous 
gene combinations for specified traits. (E) Application for elucidating trait variation effects. To examine the impact of individual loci on traits, we can simulate 
mutations at each site in two forms (homozygous Alt. and heterozygous) and contrast their effects with the original trait impact (H0). This procedure enables the 
construction of an effect plot to pinpoint significant loci that substantially contribute to the specific traits, similar to the Manhattan plots in GWAS.
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homozygous and heterozygous genetic sites throughout their offspring. 
While we primarily demonstrate this in F1 generation examples, the 
method is equally applicable to F2, F3, and F4 generations, allowing users 
to explore genetic combinations in these contexts. By inputting these vir
tual genotypes into our model, we are able to predict a range of possible 
phenotypes. For instance, using 100 potential parent lines, our model can 
quickly generate 4,950 sets of predicted phenotypes. We can then rank 
these predicted traits to determine the most promising parent combina
tions (Fig. 1B). This approach allows for a more efficient and less costly 
method for breeders to make informed decisions in the traditionally dif
ficult and uncertain task of crossbreeding.

Genomic prediction using multi-trait aggregate breeding

The quest for improved crop varieties often requires simultaneous 
enhancement of multiple phenotypic traits, a process called multi-trait 
aggregate breeding (Akdemir et al., 2019). Multi-trait aggregate breeding 
depends upon a comprehension that certain traits can be genetically linked 
and that enhancements in one trait may result in changes, both positive 
and negative, in others. To properly work within this intricate landscape, 
breeders must predict how multiple genes interact and modulate diverse 
phenotypes (Jia and Jannink, 2012). This complex task necessitates the 
careful balance and selection of several traits to achieve the desired 
combination in the progeny. Traditional breeding approaches, while ef
fective, are usually slow and complicated when dealing with polygenic 
traits with low heritability (Crossa et al., 2017).

AI-powered models excel in this area by employing vast datasets to learn 
complex patterns of genetic interactions. They are able to prioritize traits 
and examine the collective genetic contributions causing multiple pheno
types, allowing the prediction of breeding outcomes with increased preci
sion (Yan and Wang, 2023). We can prioritize traits according to their 
importance and assign weights to the prediction outcomes (Fig. 1C). This 
weighted approach allows us to combine and rank the results for multiple 
target traits, allowing for unified evaluation. The highest-scored genotypes, 
whether individual germplasm resources or virtually combined parental 
genotypes, can be selected as preferred breeding material (Fig. 1C). In this 
way, the model can analyze the multivariate data to determine optimal 
combinations of alleles across diverse traits, informing the selection of 
parental genotypes likely to generate the optimal aggregate breeding results. 
This approach streamlines the selection process and opens up new possi
bilities for breeders to explore combinations of traits that might have pre
viously been too challenging to consider. Therefore, AI serves as an accel
erator for developing novel varieties to meet the growing demands for 
higher yield, improved quality, and enhanced resilience in crops, ensuring 
food security and sustainable agricultural practices.

To optimize breeding outcomes, we aim to characterize parent 
combinations with an ideal mix of beneficial haplotypes for various 
desired traits. Leveraging our trait prediction model, we can experiment 
with virtual genotypes by comprehensively swapping specific genetic 
loci, particularly those with high importance as indicated by genetic 
mapping or functional genomics. By analyzing the phenotypic data 
generated by the model, we can prioritize and select the most promising 
haplotype combinations (Fig. 1D). This approach hinges on available 
genotypes or hypothetical parental pairings and surpasses traditional 
GWAS and association studies, particularly with respect to complex 
traits with low heritability, like crop yield. By focusing on the cumu
lative influence of multiple key genes, we have improved our ability to 
produce meaningful improvements in plant breeding programs.

Genomic prediction using explainable AI models

For genomic prediction in agriculture, the interpretability of AI models, 
known as explainable AI (XAI), is not merely academic; it has practical 
implications (Novakovsky et al., 2023). Being able to explain predictions 
allows for rapid development of genetic markers for breeding, and can 
lead to more robust and resilient crop varieties. It also develops the 

confidence of breeders in AI-based decisions, which is critical for their 
adoption in breeding programs. The state-of-the-art approach for XAI in
cludes various methodologies, such as model-agnostic approaches that 
approximate the predictions of complex models with more interpretable 
ones, or perturbation-based methods that assess the impact of input var
iations on predictions (Zhou and Troyanskaya, 2015; Xu and Jackson, 
2019; Ivanovs et al., 2021). For instance, to progress toward explainable 
deep learning, we can employ sequence perturbation in our refined models 
to examine the effects of mutations at specific loci. This approach is unique 
compared to other genomic prediction models that predict chromatin 
accessibility or transcription factor binding via sequence perturbations; we 
focus on locus-specific mutations and phenotypic impacts. This enables us 
to evaluate the influence of each locus on the phenotype, extracting cri
tical variant location information. While this technique has similarities 
with GWAS, it remains distinct (Fig. 1E). However, these approaches often 
provide only partial insights and can be computationally expensive or 
impractical for large-scale genomic data.

Within the SoyDNGP model architecture, we implemented an attention 
mechanism, directing the neurons to prioritize key features throughout the 
extraction, assigning increased weight to more pivotal locational attri
butes. This is intended to allow for the extraction of significant locational 
data from the genotype, similar to how GWAS quantifies the relevance of 
each genetic association. By focusing on the attention weights, we can 
pinpoint the most influential loci. To interpret the influence of genetic 
variation on specific traits, we constructed a decoder that mirrors the 
structure of the trained fully convolutional neural network (FCNN) model 
using transposed convolutions ((Fig. 2A). Each transposed convolution 
block in the decoder is shaped and weighted to align with its counterpart 
in the FCNN, guaranteeing that when a tensor filled with ones and shaped 
like the FCNN output is inputted, the resulting weight distribution matrix 
is aligned with the feature map dimensions (Fig. 2A). This matrix's weight 
distribution enables us to approximate the model's allocation of weights to 
different loci, gauging the impact of variant sites on traits. Our trials de
monstrated that the attention mechanism could accurately characterize 
relevant loci for single-gene traits like soybean FC and POD (Sedivy et al., 
2017) (Fig. 2B). However, it was less successful for complex quantitative 
traits. This could be due to the requirement of highly accurate phenotype 
models, and the influence of the model's activation functions on weight 
assignment. Removing these functions harms the prediction accuracy, 
resulting in unreliable information from an imprecise model.

Determining how to utilize the network to meaningfully interpret 
locational data remains unresolved and is an ongoing challenge we are 
determined to address in the future. The push for XAI in genomics is, 
therefore, not just about uncovering AI but is intricately linked with the 
desire to advance our fundamental understanding of complex genetic 
traits. This pursuit will require interdisciplinary collaboration and in
tegration of computational modeling, bioinformatics, and experimental 
biology. Only through such a concerted effort can we hope to advance 
XAI in a meaningful way that serves the demands of genomic prediction 
and assists in securing the future of agriculture.

Genome prediction integrating environmental factors

The influence of environmental factors on crop growth and devel
opment is especially significant. In soybeans, the flowering period is 
notably influenced by environmental conditions. This significance is 
highlighted by the integral role of multi-environmental experiments in 
crop breeding, underscoring the necessity of incorporating environ
mental factors into genome prediction models. Research has indicated 
that models considering the interplay between environmental and ge
netic factors can substantially improve predictive ability (Crossa et al., 
2016; Cuevas et al., 2017). These environmental factors are varied and 
assorted into two main categories: readily observable factors, including 
the location of crop growth, temperature, light, and humidity, and 
those that are more challenging to measure, including the internal 
cellular environment of plants (Xu et al., 2022).
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The difficulty in this approach lies in considering the multifaceted 
environmental influences and their intersections with genetic factors. 
However, the successful introduction of deep learning in various domains 
indicates a promising approach for improving genome prediction models 
by integrating environmental factors (Khan et al., 2022). Our previous 
genome prediction models, primarily focused on genetic data, have de
monstrated the efficacy of deep learning techniques. Building upon this 
foundation, we propose enhancements to these models by adding 

environmental considerations for a more comprehensive and realistic ap
proach. For instance, the enhanced model could be composed of two sub- 
modules: one for genes and another for environmental factors. The gene 
sub-model would adhere to the preprocessing structure of the SoyDNGP 
model, while the environment sub-model would be designed to deal with a 
matrix of N-dimensional environmental features, aligned with the di
mensions of the gene model input (Fig. 3). The two sets of features, genetic 
and environmental, could be integrated using approaches including point 
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Fig. 3. Construction of genome prediction models 
combining genotypic and environmental features. 
This figure depicts the architecture of genome prediction 
models integrating both genotypic (G) and environmental 
(E) factors. To predict crop phenotypes in reaction to en
vironmental influences, the model includes three parts: a 
gene model, an environment model, and a gene-environ
ment interaction model. The gene model employs a pre
processing structure similar to SoyDNGP, while the en
vironment model uses a matrix with dimensions matching 
the gene model input, accommodating N-dimensional en
vironmental features (N being the number of environ
mental feature dimensions). These input features are re
sized with a deep-learning model to align the feature map 
of the gene model. Subsequently, the features from both 
models are combined (either through point multiplication 
or direct addition) and incorporated into the gene-en
vironment interaction model for training. The final output 
of the model is a prediction of the crop's phenotype under 
given environmental conditions.
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Fig. 2. Depiction of the Decoder Structure of SoyDNGP and Preliminary Soybean Applications. 
(A) Illustration of the encoder-decoder framework in SoyDNGP. The transposed convolution blocks of the decoder are constructed and weighted to match their corre
sponding elements in the fully convolutional neural network (FCNN). This guarantees that when a tensor, resembling the FCNN output in shape, but filled with ones, is fed 
into the system, the constructed weight distribution matrix accurately reflects the dimensions of the feature map. The distribution of weights in this matrix allows for the 
estimation of the model prioritizing different loci and assessing the influence of genetic variations on trait expression. (B) Analysis of the weight map for characterizing 
soybean traits such as flower and pod colors. For the SoyDNGP-Baseline version, we performed weight inversion on its associated decoder, normalizing the resulting weight 
distribution matrix using the z-score and using the 3σ rule to remove outliers for Manhattan plot visualization. With a normal distribution, values within the range of (μ-3σ, 
μ + 3σ) are likely with a probability of 0.9974. Employing thresholds of 3σ, 5σ, and 7σ, we evaluated the significance of loci weights. Our findings demonstrate that for the 
flower color (FC) and pod color (POD) traits, the SoyDNGP model has significant attention bias on chromosomes 13 and 18, respectively. After sorting the weight matrix by 
weight size and choosing variant sites with weights in the top 99.9%, we determined the following loci for the FC trait: 'Chr13_16869677,' 'Chr13_17001366,' 
'Chr13_17125100,' and 'Chr13_17304314.' These are within 10 kb of the established major gene Glyma.13G072100. Similarly, for the POD trait, the model's focus included 
loci 'Chr19_35024802,' 'Chr19_35081852', 'Chr19_35104157,' 'Chr19_35154892,' 'Chr19_35176331,' and 'Chr19_35234834,' near the known major gene Glyma.19G101700. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

W. Feng, P. Gao and X. Wang                                                                                                                                                                         New Crops 1 (2024) 100010

4



multiplication or direct addition (Fig. 3). This fused feature map would be 
integrated into a gene-environment interaction model for training, ulti
mately resulting in more accurate phenotypic predictions. This approach 
aims to leverage the strengths of deep learning to obtain the complex 
interplay between genetics and environments in crop breeding.

Conclusions

AI in crop breeding represents a transformative shift accompanied by 
significant implications. It promises accelerated breeding cycles, refined 
selection precision, and adequate handling of complex genomic data. AI 
models, including SoyDNGP, exemplify these advantages, possibly fast- 
tracking the crop breeding process. However, as the methodologies we 
have proposed for the selection of breeding parents, prediction of multi- 
trait/gene aggregation effects, and integration of environmental factors, 
the interpretation of deep learning models call for feasibility, they also 
demand further validation and development by interdisciplinary groups of 
researchers. As we refine these technologies, AI breeders could evolve 
from a tool for prediction to an autonomous system able to make informed 
decisions throughout the breeding process. This evolution would re
volutionize how breeding decisions are made and could contribute sig
nificantly to global food security and sustainable agriculture.
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